Soft network composite materials with deterministic and bio-inspired designs
نویسندگان
چکیده
Hard and soft structural composites found in biology provide inspiration for the design of advanced synthetic materials. Many examples of bio-inspired hard materials can be found in the literature; far less attention has been devoted to soft systems. Here we introduce deterministic routes to low-modulus thin film materials with stress/strain responses that can be tailored precisely to match the non-linear properties of biological tissues, with application opportunities that range from soft biomedical devices to constructs for tissue engineering. The approach combines a low-modulus matrix with an open, stretchable network as a structural reinforcement that can yield classes of composites with a wide range of desired mechanical responses, including anisotropic, spatially heterogeneous, hierarchical and self-similar designs. Demonstrative application examples in thin, skin-mounted electrophysiological sensors with mechanics precisely matched to the human epidermis and in soft, hydrogel-based vehicles for triggered drug release suggest their broad potential uses in biomedical devices.
منابع مشابه
Metal-coordination: Using one of nature's tricks to control soft material mechanics.
Growing evidence supports a critical role of dynamic metal-coordination crosslinking in soft biological material properties such as self-healing and underwater adhesion1. Using bio-inspired metal-coordinating polymers, initial efforts to mimic these properties have shown promise2. Here we demonstrate how bio-inspired aqueous polymer network mechanics can be easily controlled via metal-coordinat...
متن کاملBio - inspired stretchable network - based intelligent composites
The human skin hosts an array of sensors that are capable of detecting and interpreting many traits important to how we function and survive. The goal of mimicking this capability in composites to create intelligent composite materials has led to the development of a bio-inspired stretchable network composed of numerous micro-fabricated sensors capable of detecting multiple stimuli. The compone...
متن کاملSelf-assembled hierarchically structured organic-inorganic composite systems.
Designing bio-inspired, multifunctional organic-inorganic composite materials is one of the most popular current research objectives. Due to the high complexity of biocomposite structures found in nacre and bone, for example, a one-pot scalable and versatile synthesis approach addressing structural key features of biominerals and affording bio-inspired, multifunctional organic-inorganic composi...
متن کاملBio-inspired dental multilayers: effects of layer architecture on the contact-induced deformation.
The ceramic crown structures under occlusal contact are idealized as flat multilayered structures that are deformed under Hertzian contact loading. Those multilayers consist of a crown-like ceramic top layer, an adhesive layer and the dentin-like substrate. Bio-inspired design of the adhesive layer proposed functionally graded multilayers (FGM) that mimic the dentin-enamel junction in natural t...
متن کاملA new class of bio-composite materials of unique collagen fibers.
A novel collagen-based bio-composite was constructed from micro-crimped long collagen fiber bundles extracted from a soft coral embedded in alginate hydrogel matrix. The mechanical features of this bio-composite were studied for different fiber fractions and in longitudinal and transverse loading modes. The tensile modulus of the alginate hydrogel was 0.60±0.35MPa and in longitudinal collagen-r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015